metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[μ_2 -N'-acetyl-2-hydroxy-6-oxidobenzohydrazidato(3-)]octapyridinetrinickel(II)

Yan Yang, Dacheng Li* and Xuefeng Shi

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: lidacheng62@lcu.edu.cn

Received 19 May 2009; accepted 29 May 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; *R* factor = 0.075; w*R* factor = 0.210; data-to-parameter ratio = 14.0.

The title trinuclear complex, $[Ni_3(C_9H_7N_2O_4)_2(C_5H_5N)_8]$, possesses a crystallographically imposed center of symmetry occupied by one Ni^{II} ion. Each of the three Ni^{II} ions is coordinated by two O and four N atoms, respectively, in a distorted octahedral geometry. In the crystal, weak intermolecular $C-H\cdots\pi$ interactions link the molecules into ribbons propagating in the [100] direction.

Related literature

For applications of *N*-acetylsalicylhydrazide complexes, see: John *et al.* (2004); Lin *et al.* (2002).

Experimental

Crystal data

 $\begin{bmatrix} Ni_{3}(C_{9}H_{7}N_{2}O_{4})_{2}(C_{5}H_{5}N)_{8} \end{bmatrix}$ $M_{r} = 1223.26$ Monoclinic, $P2_{1}/n$ a = 9.9349 (18) Å b = 18.230 (3) Å c = 16.262 (2) Å $\beta = 96.663$ (2)°

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.614, T_{\rm max} = 0.663$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.075$ $wR(F^2) = 0.210$ S = 0.975138 reflections 368 parameters

Table 1

Hydrogen-bond	geometry ((Å, °	°).
---------------	------------	-------	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$C27-H27\cdots Cg^{i}$	0.93	2.52	3.428 (4)	166

V = 2925.3 (8) Å³

Mo $K\alpha$ radiation

 $0.53 \times 0.45 \times 0.44$ mm

14103 measured reflections

5138 independent reflections

3047 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 1.02 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.146$

1098 restraints

 $\Delta \rho_{\rm max} = 1.32 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

Z = 2

Symmetry code: (i) x + 1, y, z. Cg is the centroid of the C2–C7 ring.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We acknowledge financial support from the National Natural Science Foundation of China (grant No. 20671048).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2565).

References

John, R. P., Lee, K. J. & Lah, M. S. (2004). Chem. Commun. pp. 2660–2661.

- Lin, S., Liu, S. X. & Lin, B. Z. (2002). Inorg. Chim. Acta, **328**, 69–73.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2009). E65, m746 [doi:10.1107/S1600536809020534]

$Bis[\mu_2-N'-acetyl-2-hydroxy-6-oxidobenzohydrazidato(3-)]octapyridinetrinickel(II)$

Y. Yang, D. Li and X. Shi

Comment

In recent years, a large number of *N*-acetylsalicylhydrazide complexes have been prepared and studied due to their potential applications in chemically modified (Lin *et al.*, 2002) and anion-selective separation agents (John *et al.*, 2004). However, structures of nickel(II) complexes with *N*-acetyl-6-hydroxysalicylhydrzaide were not reported. So we have synthesized the title compound, which has been characterized by X-ray diffraction and elemental analysis.

The title complex (Fig. 1) contains three nickel(II) centers having distorted octahedral coordination environment, two ligand molecules and eight pyridine molecules. The triple-deprotonated *N*-acetyl-6-hydroxysalicylhydrzaide ligands bridge metal ions *via* hydrazide N—N group forming trinuclear nickel complex. In the crystal, the complex molecules are linked into ribbons *via* intermolecular C—H··· π weak interactions (Table 1, Fig. 2).

Experimental

A solution of Ni(OAc)_{2.4}H₂O (0.4 mmol, 0.0996 g) in dimethylformamide (10 ml) was add to *N*-acetyl-(6-hydroxysalicyl-hydrzaide) (0.2 mmol, 0.042 g) in pyridine (10 ml). A reddish solution was obtained after refluxing for 3 h. After the solution had been stanging for two weeks, red block crystals suitable for X-ray diffraction appear.(m.p. >400 K). Elemental analysis calculated for $C_{58}H_{54}N_{12}O_8Ni_3$: C 56.95, H 4.45, N 13.74%; found: C 56.92, H 4.44, N 13.76%.

Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H 0.93 (pyridine, benzene) or 0.97 (methylene) Å [$U_{iso}(H) = 1.2U_{eq}(C)$], and O—H 0.82 Å (hydroxyl) [$U_{iso}(H) = 1.5U_{eq}(O)$].

Figures

Fig. 1. The molecular structure of the title complex, showing 40% probability displacement ellipsoids and the atomic numbering [symmetry code: (A) -x, -y, 2-z]. H atoms have been omitted for clarity.

Fig. 2. A portion of the crystal packing showing one-dimensional ribbons. Intermolecular C—H $\cdots\pi$ interactions are shown as dashed lines. Most of H atoms are omitted.

Bis[µ2-N'-acetyl-2-hydroxy-6- oxidobenzohydrazidato(3-)]octapyridinetrinickel(II)

Crystal data

[Ni₃(C₉H₇N₂O₄)₂(C₅H₅N)₈] $F_{000} = 1268$ $M_r = 1223.26$ $D_{\rm x} = 1.389 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/n$ $\lambda = 0.71073 \text{ Å}$ *a* = 9.9349 (18) Å Cell parameters from 4241 reflections $\theta = 2.2 - 26.2^{\circ}$ *b* = 18.230 (3) Å $\mu = 1.02 \text{ mm}^{-1}$ c = 16.262 (2) ÅT = 298 K $\beta = 96.663 \ (2)^{\circ}$ Block, red V = 2925.3 (8) Å³ Z = 2 $0.53 \times 0.45 \times 0.44 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	5138 independent reflections
Radiation source: fine-focus sealed tube	3047 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.146$
T = 298 K	$\theta_{\text{max}} = 25.0^{\circ}$
phi and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.614, \ T_{\max} = 0.663$	$k = -16 \rightarrow 21$
14103 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.075$	H-atom parameters constrained
$wR(F^2) = 0.210$	$w = 1/[\sigma^2(F_o^2) + (0.0999P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.97	$(\Delta/\sigma)_{\rm max} < 0.001$
5138 reflections	$\Delta \rho_{max} = 1.32 \text{ e } \text{\AA}^{-3}$
368 parameters	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$
1098 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.0000	0.0000	1.0000	0.0357 (3)
Ni2	-0.07930 (7)	0.24578 (3)	0.88362 (4)	0.0416 (3)
N1	-0.0186 (4)	0.1420 (2)	0.9063 (2)	0.0332 (9)
N2	-0.0473 (4)	0.11377 (19)	0.9860 (2)	0.0338 (9)
N3	0.2129 (4)	0.0283 (2)	1.0484 (3)	0.0434 (10)
N4	0.1185 (5)	0.2968 (2)	0.9214 (3)	0.0502 (11)
N5	-0.1604 (5)	0.3551 (2)	0.8698 (3)	0.0525 (11)
N6	-0.2903 (4)	0.2099 (2)	0.8443 (3)	0.0506 (11)
01	0.0447 (3)	0.02165 (18)	0.88104 (19)	0.0391 (8)
02	-0.0350 (4)	0.23782 (18)	0.7661 (2)	0.0441 (8)
O3	0.1899 (5)	-0.0024 (2)	0.7669 (3)	0.0712 (14)
H3	0.1430	-0.0122	0.8037	0.107*
O4	-0.1147 (3)	0.23505 (17)	1.0063 (2)	0.0395 (8)
C1	0.0280 (5)	0.0917 (3)	0.8579 (3)	0.0338 (11)
C2	0.0716 (5)	0.1143 (3)	0.7758 (3)	0.0398 (11)
C3	0.0407 (5)	0.1859 (3)	0.7368 (3)	0.0411 (11)
C4	0.0967 (5)	0.2028 (3)	0.6618 (3)	0.0473 (13)
H4	0.0820	0.2490	0.6381	0.057*
C5	0.1731 (6)	0.1513 (3)	0.6234 (3)	0.0544 (15)
Н5	0.2057	0.1631	0.5737	0.065*
C6	0.2008 (6)	0.0828 (3)	0.6585 (3)	0.0566 (15)
H6	0.2515	0.0490	0.6323	0.068*
C7	0.1524 (6)	0.0643 (3)	0.7334 (3)	0.0472 (13)
C8	-0.0932 (5)	0.1671 (3)	1.0307 (3)	0.0398 (11)
C9	-0.1235 (7)	0.1487 (3)	1.1180 (4)	0.0637 (18)
H9A	-0.1324	0.1933	1.1484	0.096*
H9B	-0.0508	0.1199	1.1454	0.096*
H9C	-0.2065	0.1213	1.1153	0.096*
C10	0.2673 (8)	0.0927 (4)	1.0400 (5)	0.0862 (19)
H10	0.2164	0.1269	1.0074	0.103*
C11	0.3967 (9)	0.1145 (4)	1.0763 (6)	0.107 (3)
H11	0.4251	0.1627	1.0710	0.129*
C12	0.4777 (7)	0.0663 (4)	1.1179 (5)	0.088 (2)

H12	0.5658	0.0786	1.1390	0.105*
C13	0.4269 (8)	-0.0020 (5)	1.1287 (6)	0.107 (3)
H13	0.4792	-0.0373	1.1589	0.129*
C14	0.2941 (8)	-0.0185 (4)	1.0936 (5)	0.090 (2)
H14	0.2607	-0.0651	1.1025	0.108*
C15	0.1824 (6)	0.2935 (3)	0.9993 (4)	0.0557 (14)
H15	0.1414	0.2668	1.0382	0.067*
C16	0.3044 (7)	0.3272 (3)	1.0250 (4)	0.0666 (16)
H16	0.3460	0.3219	1.0789	0.080*
C17	0.3628 (7)	0.3692 (4)	0.9674 (5)	0.0728 (18)
H17	0.4438	0.3938	0.9829	0.087*
C18	0.3011 (7)	0.3746 (3)	0.8871 (5)	0.0688 (17)
H18	0.3398	0.4023	0.8480	0.083*
C19	0.1795 (7)	0.3376 (3)	0.8662 (4)	0.0604 (15)
H19	0.1379	0.3409	0.8120	0.073*
C20	-0.1519 (7)	0.4020 (3)	0.9337 (4)	0.0663 (16)
H20	-0.1007	0.3891	0.9831	0.080*
C21	-0.2174 (9)	0.4691 (4)	0.9283 (5)	0.091 (2)
H21	-0.2080	0.5009	0.9733	0.109*
C22	-0.2966 (9)	0.4892 (4)	0.8563 (5)	0.088 (2)
H22	-0.3422	0.5338	0.8527	0.106*
C23	-0.3065 (8)	0.4426 (4)	0.7915 (5)	0.088 (2)
H23	-0.3595	0.4543	0.7423	0.105*
C24	-0.2355 (7)	0.3765 (3)	0.7999 (4)	0.0719 (17)
H24	-0.2404	0.3454	0.7543	0.086*
C25	-0.3903 (6)	0.2194 (3)	0.8929 (4)	0.0618 (15)
H25	-0.3665	0.2354	0.9470	0.074*
C26	-0.5244 (7)	0.2068 (4)	0.8675 (5)	0.0719 (18)
H26	-0.5888	0.2123	0.9042	0.086*
C27	-0.5625 (7)	0.1861 (4)	0.7873 (5)	0.0825 (19)
H27	-0.6535	0.1789	0.7683	0.099*
C28	-0.4647 (7)	0.1759 (4)	0.7351 (5)	0.086 (2)
H28	-0.4876	0.1617	0.6803	0.103*
C29	-0.3281 (7)	0.1878 (4)	0.7675 (4)	0.0682 (16)
H29	-0.2612	0.1797	0.7330	0.082*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0354 (5)	0.0393 (5)	0.0350 (5)	-0.0006 (4)	0.0142 (4)	0.0001 (4)
Ni2	0.0364 (4)	0.0471 (4)	0.0422 (4)	0.0048 (3)	0.0081 (3)	0.0048 (3)
N1	0.026 (2)	0.0410 (19)	0.033 (2)	0.0001 (16)	0.0076 (17)	0.0064 (17)
N2	0.035 (2)	0.0358 (19)	0.032 (2)	0.0048 (17)	0.0112 (17)	0.0031 (16)
N3	0.039 (2)	0.047 (2)	0.046 (2)	-0.004 (2)	0.012 (2)	0.0028 (19)
N4	0.048 (3)	0.048 (2)	0.055 (3)	-0.002 (2)	0.008 (2)	0.005 (2)
N5	0.055 (3)	0.050(2)	0.053 (3)	0.015 (2)	0.009 (2)	0.010 (2)
N6	0.036 (2)	0.058 (2)	0.058 (3)	0.001 (2)	0.009 (2)	-0.003 (2)
01	0.040 (2)	0.0467 (18)	0.0337 (18)	-0.0003 (16)	0.0150 (16)	0.0000 (14)

02	0.0369 (19)	0.0571 (19)	0.0390 (19)	0.0092 (16)	0.0071 (16)	0.0088 (15)
O3	0.101 (4)	0.057 (2)	0.066 (3)	0.011 (2)	0.052 (3)	0.003 (2)
04	0.0376 (19)	0.0430 (17)	0.040 (2)	0.0016 (15)	0.0137 (16)	-0.0014 (15)
C1	0.025 (2)	0.043 (2)	0.035 (2)	-0.0048 (19)	0.008 (2)	-0.001 (2)
C2	0.036 (3)	0.050 (3)	0.036 (3)	-0.007 (2)	0.011 (2)	0.005 (2)
C3	0.032 (3)	0.053 (3)	0.040 (3)	-0.006 (2)	0.009 (2)	0.005 (2)
C4	0.043 (3)	0.058 (3)	0.041 (3)	0.000 (3)	0.006 (3)	0.009 (2)
C5	0.049 (3)	0.073 (3)	0.044 (3)	-0.007 (3)	0.016 (3)	0.011 (3)
C6	0.061 (4)	0.063 (3)	0.050 (3)	0.003 (3)	0.026 (3)	-0.004 (3)
C7	0.056 (3)	0.044 (3)	0.046 (3)	-0.010 (2)	0.018 (3)	0.001 (2)
C8	0.034 (3)	0.046 (3)	0.040 (3)	-0.004 (2)	0.009 (2)	0.000 (2)
С9	0.085 (5)	0.053 (3)	0.061 (4)	0.013 (3)	0.040 (4)	0.009 (3)
C10	0.065 (4)	0.075 (4)	0.110 (4)	-0.018 (3)	-0.025 (4)	0.030 (3)
C11	0.079 (5)	0.086 (5)	0.145 (6)	-0.032 (4)	-0.038 (5)	0.029 (4)
C12	0.053 (4)	0.085 (4)	0.120 (6)	-0.017 (4)	-0.014 (4)	0.018 (4)
C13	0.070 (5)	0.095 (5)	0.147 (7)	0.007 (4)	-0.027 (5)	0.022 (4)
C14	0.071 (4)	0.066 (4)	0.125 (5)	-0.008 (4)	-0.022 (4)	0.009 (4)
C15	0.050 (3)	0.060 (3)	0.057 (3)	-0.003 (3)	0.005 (3)	-0.001 (3)
C16	0.057 (4)	0.074 (4)	0.067 (4)	0.003 (3)	-0.001 (3)	-0.002 (3)
C17	0.055 (4)	0.071 (4)	0.093 (5)	-0.005 (3)	0.010 (4)	-0.010 (3)
C18	0.058 (4)	0.057 (3)	0.092 (5)	-0.007 (3)	0.016 (4)	0.011 (3)
C19	0.058 (3)	0.056 (3)	0.069 (4)	0.001 (3)	0.011 (3)	0.010 (3)
C20	0.075 (4)	0.066 (3)	0.060 (3)	0.013 (3)	0.018 (3)	0.005 (3)
C21	0.114 (5)	0.082 (4)	0.076 (5)	0.032 (4)	0.006 (4)	-0.004 (4)
C22	0.101 (5)	0.072 (4)	0.093 (5)	0.036 (4)	0.014 (4)	0.013 (4)
C23	0.096 (5)	0.090 (5)	0.074 (4)	0.032 (4)	-0.007 (4)	0.025 (4)
C24	0.080 (4)	0.066 (3)	0.068 (4)	0.006 (3)	0.003 (3)	0.002 (3)
C25	0.046 (3)	0.073 (3)	0.068 (4)	0.006 (3)	0.012 (3)	-0.007 (3)
C26	0.043 (3)	0.089 (4)	0.086 (5)	0.003 (3)	0.013 (3)	-0.007 (4)
C27	0.047 (4)	0.099 (5)	0.101 (5)	0.001 (4)	0.004 (4)	0.002 (4)
C28	0.055 (4)	0.122 (5)	0.078 (5)	-0.013 (4)	0.003 (4)	-0.002 (4)
C29	0.050(3)	0.095 (4)	0.060 (3)	-0.007 (3)	0.006 (3)	-0.006 (3)

Geometric parameters (Å, °)

Ni1—O1 ⁱ	2.072 (3)	С9—Н9А	0.9600
Ni1—O1	2.072 (3)	С9—Н9В	0.9600
Ni1—N2	2.133 (4)	С9—Н9С	0.9600
Ni1—N2 ⁱ	2.133 (4)	C10—C11	1.408 (10)
Ni1—N3 ⁱ	2.230 (4)	C10—H10	0.9300
Ni1—N3	2.230 (4)	C11—C12	1.323 (10)
Ni2—N1	2.007 (4)	C11—H11	0.9300
Ni2—O2	2.016 (3)	C12—C13	1.363 (10)
Ni2—O4	2.074 (3)	C12—H12	0.9300
Ni2—N5	2.152 (4)	C13—C14	1.407 (10)
Ni2—N4	2.196 (5)	С13—Н13	0.9300
Ni2—N6	2.218 (5)	C14—H14	0.9300
N1—C1	1.326 (6)	C15—C16	1.379 (8)

N1 N2	1 453 (5)	C15 H15	0.0300
$N_2 = C_8$	1.455 (5)	C16-C17	1 388 (8)
N3_C10	1.326(0) 1.305(7)	C16—H16	0.9300
N3-C14	1.305 (7)	C17-C18	1 380 (9)
N4-C15	1 351 (7)	C17—H17	0.9300
N4—C19	1 362 (7)	C18-C19	1 391 (9)
N5-C20	1 342 (7)	C18—H18	0.9300
N5-C24	1 343 (8)	C19—H19	0.9300
N6—C29	1.324 (7)	C20—C21	1.383 (9)
N6—C25	1.351 (6)	C20—H20	0.9300
O1—C1	1.336 (6)	C21—C22	1.382 (10)
O2—C3	1.331 (6)	C21—H21	0.9300
O3—C7	1.367 (6)	C22—C23	1.348 (10)
О3—Н3	0.8200	C22—H22	0.9300
O4—C8	1.310 (6)	C23—C24	1.396 (9)
C1—C2	1.509 (6)	С23—Н23	0.9300
C2—C7	1.442 (7)	C24—H24	0.9300
C2—C3	1.467 (7)	C25—C26	1.368 (9)
C3—C4	1.432 (7)	С25—Н25	0.9300
C4—C5	1.399 (7)	C26—C27	1.369 (9)
C4—H4	0.9300	С26—Н26	0.9300
C5—C6	1.387 (8)	C27—C28	1.375 (9)
С5—Н5	0.9300	С27—Н27	0.9300
C6—C7	1.401 (7)	C28—C29	1.414 (9)
С6—Н6	0.9300	C28—H28	0.9300
C8—C9	1.523 (7)	С29—Н29	0.9300
01 ⁱ —Ni1—01	180.000 (1)	O3—C7—C2	120.9 (4)
O1 ⁱ —Ni1—N2	102.49 (13)	C6—C7—C2	122.0 (5)
O1—Ni1—N2	77.51 (13)	O4—C8—N2	125.6 (4)
O1 ⁱ —Ni1—N2 ⁱ	77.51 (13)	O4—C8—C9	116.6 (4)
O1—Ni1—N2 ⁱ	102.49 (13)	N2—C8—C9	117.8 (4)
N2—Ni1—N2 ⁱ	180.000 (1)	С8—С9—Н9А	109.5
O1 ⁱ —Ni1—N3 ⁱ	89.33 (14)	С8—С9—Н9В	109.5
O1—Ni1—N3 ⁱ	90.67 (14)	Н9А—С9—Н9В	109.5
N2—Ni1—N3 ⁱ	89.97 (15)	С8—С9—Н9С	109.5
N2 ⁱ —Ni1—N3 ⁱ	90.03 (16)	Н9А—С9—Н9С	109.5
O1 ⁱ —Ni1—N3	90.67 (14)	Н9В—С9—Н9С	109.5
O1—Ni1—N3	89.33 (14)	N3—C10—C11	125.4 (7)
N2—Ni1—N3	90.03 (16)	N3—C10—H10	117.3
N2 ⁱ —Ni1—N3	89.97 (15)	C11—C10—H10	117.3
N3 ⁱ —Ni1—N3	180.0	C12—C11—C10	119.9 (7)
N1—Ni2—O2	90.71 (14)	C12—C11—H11	120.1
N1—Ni2—O4	79.35 (14)	C10—C11—H11	120.1
O2—Ni2—O4	170.05 (13)	C11—C12—C13	117.4 (7)
N1—Ni2—N5	173.36 (15)	C11—C12—H12	121.3
O2—Ni2—N5	95.04 (15)	C13—C12—H12	121.3

O4—Ni2—N5	94.86 (15)	C12—C13—C14	119.1 (8)
N1—Ni2—N4	96.18 (16)	C12—C13—H13	120.5
O2—Ni2—N4	90.50 (16)	C14—C13—H13	120.5
O4—Ni2—N4	90.97 (15)	N3—C14—C13	124.4 (7)
N5—Ni2—N4	87.10 (18)	N3—C14—H14	117.8
N1—Ni2—N6	91.67 (16)	C13—C14—H14	117.8
O2—Ni2—N6	90.48 (16)	N4—C15—C16	124.5 (6)
O4—Ni2—N6	89.41 (15)	N4—C15—H15	117.8
N5—Ni2—N6	84.98 (18)	C16—C15—H15	117.8
N4—Ni2—N6	172.08 (16)	C15—C16—C17	117.6 (7)
C1—N1—N2	113.7 (4)	C15—C16—H16	121.2
C1—N1—Ni2	131.4 (3)	C17—C16—H16	121.2
N2—N1—Ni2	114.3 (3)	C18—C17—C16	120.2 (7)
C8—N2—N1	110.1 (4)	C18—C17—H17	119.9
C8—N2—Ni1	137.8 (3)	С16—С17—Н17	119.9
N1—N2—Ni1	112.1 (2)	C17—C18—C19	118.4 (6)
C10—N3—C14	113.6 (6)	C17—C18—H18	120.8
C10—N3—Ni1	124.0 (4)	C19—C18—H18	120.8
C14—N3—Ni1	122.3 (4)	N4—C19—C18	123.0 (6)
C15—N4—C19	116.4 (5)	N4—C19—H19	118.5
C15—N4—Ni2	123.5 (4)	С18—С19—Н19	118.5
C19—N4—Ni2	120.0 (4)	N5-C20-C21	121.8 (6)
C20—N5—C24	116.8 (5)	N5-C20-H20	119.1
C20—N5—Ni2	121.3 (4)	C21—C20—H20	119.1
C24—N5—Ni2	121.5 (4)	C22—C21—C20	120.4 (7)
C29—N6—C25	116.4 (5)	C22—C21—H21	119.8
C29—N6—Ni2	121.1 (4)	C20—C21—H21	119.8
C25—N6—Ni2	121.9 (4)	C23—C22—C21	118.6 (7)
C1—O1—Ni1	114.3 (3)	С23—С22—Н22	120.7
C3—O2—Ni2	125.8 (3)	C21—C22—H22	120.7
С7—О3—Н3	109.5	C22—C23—C24	118.5 (7)
C8—O4—Ni2	109.9 (3)	С22—С23—Н23	120.8
N1-C1-O1	122.3 (4)	С24—С23—Н23	120.8
N1—C1—C2	119.5 (4)	N5-C24-C23	123.9 (6)
O1—C1—C2	118.1 (4)	N5-C24-H24	118.0
C7—C2—C3	117.1 (4)	C23—C24—H24	118.0
C7—C2—C1	118.9 (4)	N6-C25-C26	123.9 (6)
C3—C2—C1	123.9 (4)	N6—C25—H25	118.1
O2—C3—C4	116.3 (4)	С26—С25—Н25	118.1
O2—C3—C2	125.2 (4)	C25—C26—C27	119.1 (7)
C4—C3—C2	118.5 (4)	С25—С26—Н26	120.4
C5—C4—C3	121.3 (5)	С27—С26—Н26	120.4
С5—С4—Н4	119.3	C26—C27—C28	119.2 (7)
С3—С4—Н4	119.3	С26—С27—Н27	120.4
C6—C5—C4	120.8 (5)	С28—С27—Н27	120.4
С6—С5—Н5	119.6	C27—C28—C29	117.8 (7)
С4—С5—Н5	119.6	C27—C28—H28	121.1
C5—C6—C7	120.1 (5)	С29—С28—Н28	121.1
С5—С6—Н6	119.9	N6—C29—C28	123.5 (6)

С7—С6—Н6	119.9	N6—C29—H29	118.2
O3—C7—C6	117.1 (5)	С28—С29—Н29	118.2
O2—Ni2—N1—C1	-1.3 (4)	N4—Ni2—O2—C3	80.9 (4)
O4—Ni2—N1—C1	178.3 (4)	N6—Ni2—O2—C3	-106.9 (4)
N5—Ni2—N1—C1	148.8 (14)	N1—Ni2—O4—C8	-6.2 (3)
N4—Ni2—N1—C1	-91.9 (4)	O2—Ni2—O4—C8	-3.8 (10)
N6—Ni2—N1—C1	89.2 (4)	N5—Ni2—O4—C8	170.5 (3)
O2—Ni2—N1—N2	-172.0 (3)	N4—Ni2—O4—C8	-102.3 (3)
O4—Ni2—N1—N2	7.6 (3)	N6—Ni2—O4—C8	85.6 (3)
N5—Ni2—N1—N2	-21.9 (17)	N2—N1—C1—O1	0.9 (6)
N4—Ni2—N1—N2	97.4 (3)	Ni2—N1—C1—O1	-169.9 (3)
N6—Ni2—N1—N2	-81.5 (3)	N2—N1—C1—C2	-175.6 (4)
C1—N1—N2—C8	180.0 (4)	Ni2—N1—C1—C2	13.7 (7)
Ni2—N1—N2—C8	-7.7 (5)	Ni1—O1—C1—N1	-2.7 (6)
C1—N1—N2—Ni1	1.3 (5)	Ni1—O1—C1—C2	173.8 (3)
Ni2—N1—N2—Ni1	173.68 (17)	N1—C1—C2—C7	164.7 (5)
O1 ⁱ —Ni1—N2—C8	-0.1 (5)	O1—C1—C2—C7	-11.9 (7)
O1—Ni1—N2—C8	179.9 (5)	N1—C1—C2—C3	-13.2 (7)
N2 ⁱ —Ni1—N2—C8	-18 (100)	O1—C1—C2—C3	170.2 (4)
N3 ⁱ —Ni1—N2—C8	89.2 (5)	Ni2—O2—C3—C4	-159.8 (4)
N3—Ni1—N2—C8	-90.8 (5)	Ni2—O2—C3—C2	19.3 (7)
O1 ⁱ —Ni1—N2—N1	178.0 (3)	C7—C2—C3—O2	178.3 (5)
O1—Ni1—N2—N1	-2.0 (3)	C1—C2—C3—O2	-3.8 (8)
N2 ⁱ —Ni1—N2—N1	160 (100)	C7—C2—C3—C4	-2.6 (7)
N3 ⁱ —Ni1—N2—N1	-92.7 (3)	C1—C2—C3—C4	175.3 (5)
N3—Ni1—N2—N1	87.3 (3)	O2—C3—C4—C5	-177.3 (5)
O1 ⁱ —Ni1—N3—C10	-118.7 (5)	C2—C3—C4—C5	3.5 (8)
O1—Ni1—N3—C10	61.3 (5)	C3—C4—C5—C6	-2.2 (9)
N2—Ni1—N3—C10	-16.2 (5)	C4—C5—C6—C7	-0.1 (9)
N2 ⁱ —Ni1—N3—C10	163.8 (5)	C5—C6—C7—O3	-176.4 (6)
N3 ⁱ —Ni1—N3—C10	148 (100)	C5—C6—C7—C2	0.9 (9)
O1 ⁱ —Ni1—N3—C14	57.0 (5)	C3—C2—C7—O3	177.7 (5)
O1—Ni1—N3—C14	-123.0 (5)	C1—C2—C7—O3	-0.4 (8)
N2—Ni1—N3—C14	159.5 (5)	C3—C2—C7—C6	0.5 (8)
N2 ⁱ —Ni1—N3—C14	-20.5 (5)	C1—C2—C7—C6	-177.6 (5)
N3 ⁱ —Ni1—N3—C14	-36 (100)	Ni2—O4—C8—N2	4.1 (6)
N1—Ni2—N4—C15	-63.4 (4)	Ni2—O4—C8—C9	-176.2 (4)
O2-Ni2-N4-C15	-154.1 (4)	N1—N2—C8—O4	2.2 (7)
O4—Ni2—N4—C15	16.0 (4)	Ni1—N2—C8—O4	-179.7 (4)
N5—Ni2—N4—C15	110.8 (4)	N1—N2—C8—C9	-177.5 (4)
N6—Ni2—N4—C15	108.7 (12)	Ni1—N2—C8—C9	0.6 (8)
N1—Ni2—N4—C19	120.4 (4)	C14—N3—C10—C11	-2.3 (11)
O2—Ni2—N4—C19	29.6 (4)	Ni1—N3—C10—C11	173.7 (7)
O4—Ni2—N4—C19	-160.2 (4)	N3—C10—C11—C12	5.3 (15)
N5—Ni2—N4—C19	-65.4 (4)	C10-C11-C12-C13	-4.6 (14)
N6—Ni2—N4—C19	-67.5 (14)	C11—C12—C13—C14	1.7 (14)

N1—Ni2—N5—C20	60.4 (17)	C10—N3—C14—C13	-0.8 (11)
O2-Ni2-N5-C20	-149.7 (5)	Ni1—N3—C14—C13	-176.9 (7)
O4—Ni2—N5—C20	31.3 (5)	C12—C13—C14—N3	1.1 (14)
N4—Ni2—N5—C20	-59.4 (5)	C19—N4—C15—C16	-1.4 (8)
N6—Ni2—N5—C20	120.3 (5)	Ni2—N4—C15—C16	-177.7 (4)
N1—Ni2—N5—C24	-111.6 (15)	N4-C15-C16-C17	2.3 (9)
O2—Ni2—N5—C24	38.3 (5)	C15-C16-C17-C18	-1.8 (9)
O4—Ni2—N5—C24	-140.7 (5)	C16—C17—C18—C19	0.6 (10)
N4—Ni2—N5—C24	128.6 (5)	C15—N4—C19—C18	0.0 (8)
N6—Ni2—N5—C24	-51.7 (5)	Ni2-N4-C19-C18	176.5 (4)
N1—Ni2—N6—C29	-84.5 (5)	C17—C18—C19—N4	0.4 (9)
O2—Ni2—N6—C29	6.3 (5)	C24—N5—C20—C21	0.2 (10)
O4—Ni2—N6—C29	-163.8 (5)	Ni2—N5—C20—C21	-172.2 (5)
N5—Ni2—N6—C29	101.3 (5)	N5-C20-C21-C22	1.4 (12)
N4—Ni2—N6—C29	103.4 (12)	C20—C21—C22—C23	-1.2 (13)
N1—Ni2—N6—C25	105.2 (4)	C21—C22—C23—C24	-0.4 (13)
O2—Ni2—N6—C25	-164.1 (4)	C20—N5—C24—C23	-1.9 (10)
O4—Ni2—N6—C25	25.8 (4)	Ni2—N5—C24—C23	170.5 (5)
N5—Ni2—N6—C25	-69.1 (4)	C22—C23—C24—N5	2.0 (12)
N4—Ni2—N6—C25	-67.0 (14)	C29—N6—C25—C26	0.6 (9)
01 ⁱ —Ni1—O1—C1	-157 (100)	Ni2—N6—C25—C26	171.4 (5)
N2—Ni1—O1—C1	2.4 (3)	N6-C25-C26-C27	-2.6 (11)
N2 ⁱ —Ni1—O1—C1	-177.6 (3)	C25—C26—C27—C28	2.3 (11)
N3 ⁱ —Ni1—O1—C1	92.3 (3)	C26—C27—C28—C29	-0.2 (12)
N3—Ni1—O1—C1	-87.7 (3)	C25—N6—C29—C28	1.6 (10)
N1—Ni2—O2—C3	-15.3 (4)	Ni2—N6—C29—C28	-169.3 (6)
O4—Ni2—O2—C3	-17.6 (10)	C27—C28—C29—N6	-1.8 (12)
N5—Ni2—O2—C3	168.1 (4)		
Symmetry codes: (i) $-x$, $-y$, $-z+2$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!- \!$
C27—H27···Cg ⁱⁱ	0.93	2.52	3.428 (4)	166

Symmetry codes: (ii) x+1, y, z.

Fig. 1

